Electronic-Structure Tuning of Water-Splitting Nanocatalysts
نویسندگان
چکیده
منابع مشابه
Ab initio electronic structure study of a model water splitting dimer complex.
A model manganese dimer electrocatalyst bridged by μ-OH ligands is used to investigate changes in spin states that may occur during water oxidation. We have employed restricted open-shell Hartree-Fock (ROHF), second-order Møller-Plesset perturbation theory (MP2), complete active space self-consistent field (CASSCF), and multireference second-order Møller-Plesset perturbation theory (MRMP2) calc...
متن کاملThe electronic structure of iridium oxide electrodes active in water splitting.
Iridium oxide based electrodes are among the most promising candidates for electrocatalyzing the oxygen evolution reaction, making it imperative to understand their chemical/electronic structure. However, the complexity of iridium oxide's electronic structure makes it particularly difficult to experimentally determine the chemical state of the active surface species. To achieve an accurate unde...
متن کاملAb initio Electronic Structure of Liquid Water.
Self-consistent GW calculations with efficient vertex corrections are employed to determine the electronic structure of liquid water. Nuclear quantum effects are taken into account through ab initio path-integral molecular dynamics simulations. We reveal a sizable band-gap renormalization of up to 0.7 eV due to hydrogen-bond quantum fluctuations. Our calculations lead to a band gap of 8.9 eV, i...
متن کاملElectronic structure of the water dimer cation.
The spectroscopic signatures of proton transfer in the water dimer cation were investigated. The six lowest electronic states were characterized along the reaction coordinate using the equation-of-motion coupled-cluster with single and double substitutions method for ionized systems. The nature of the dimer states was explained in terms of the monomer states using a qualitative molecular orbita...
متن کاملTuning the electronic structure of graphene by an organic molecule.
The electronic structure of an electron-acceptor molecule, tetracyanoethylene (TCNE), on graphene was investigated using the first-principles method based on density functional theory. It was theoretically demonstrated that a p-type graphene can be obtained via charge transfer between an organic molecule and graphene. Both the carrier concentration and band gap at the Dirac point can be control...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Trends in Chemistry
سال: 2019
ISSN: 2589-5974
DOI: 10.1016/j.trechm.2019.03.006